Skip to content

Usage Guide

This page covers common workflows for both the CLI and the Flask Web UI.
For installation instructions see Installation.

1  Command‑line interface

1.1 Basic syntax

agent-generator [OPTIONS] "plain‑English requirement"

1.2 Frequently used flags

Flag / Option Description Example
-f, --framework * Which generator to use (crewai, langgraph, …). --framework crewai
-p, --provider LLM back‑end (watsonx default, or openai). --provider openai
--model Override default model for the provider. --model gpt-4o
--temperature Sampling randomness (0–2). --temperature 0.3
--max-tokens Response length cap. --max-tokens 2048
--mcp / --no-mcp Wrap Python output in an MCP FastAPI server. --mcp
-o, --output PATH Write result to file instead of stdout. -o team.py
--dry-run Build workflow + code skeleton but skip LLM call. --dry-run
--show-cost Print token counts & approximate USD cost. --show-cost

1.3 Common recipes

Goal Command
Orchestrate YAML from one‑liner agent-generator "Email summariser" -f watsonx_orchestrate -o summariser.yaml
CrewAI Flow with MCP wrapper agent-generator "Analyse tweets" -f crewai_flow --mcp -o tweets_flow.py
Cost estimate only agent-generator "Scrape website" -f react --dry-run --show-cost
Use OpenAI instead of WatsonX agent-generator "Write jokes" -f react -p openai --model gpt-4o

2  Flask Web UI

2.1 Run locally

FLASK_APP=agent_generator.web FLASK_ENV=development flask run
# visit http://localhost:5000

2.2 Workflow

  1. Fill in prompt – describe your requirement.
  2. Pick framework & provider – drop‑downs.
  3. (Optional) toggle MCP wrapper.
  4. Click Generate.
  5. Download the code/YAML or copy‑paste from the preview.
  6. Mermaid diagram appears under the code for quick validation.

UI screenshot

3  Docker usage

docker build -t agent-generator .
docker run -e WATSONX_API_KEY=... -e WATSONX_PROJECT_ID=... \
           -p 8000:8000 agent-generator
# Web UI → http://localhost:8000

You can also exec into the container to run the CLI:

docker run --rm agent-generator agent-generator "Say hi" -f react --dry-run

4  Serving generated MCP skills

Every Python framework (crewai, crewai_flow, langgraph, react) can be generated with an MCP wrapper:

agent-generator "...data pipeline..." -f langgraph --mcp -o pipeline.py
python pipeline.py serve      # exposes POST /invoke on port 8080

Upload the packaged script or its Docker image to your MCP Gateway and then import it as a custom skill in WatsonX Orchestrate.

5  Troubleshooting

Symptom Resolution
CLI raises 401 (WatsonX) Verify WATSONX_API_KEY, WATSONX_PROJECT_ID, region URL.
ModuleNotFoundError: flask pip install "agent-generator[web]"
Diagram doesn’t render in UI Check browser console – Mermaid JS must load (make sure unpkg.com isn’t blocked).
High cost estimate Lower --max-tokens or pick llama‑3‑8b instead.
Gateway import fails Ensure you used --mcp and port 8080 is exposed.

Still stuck? Open an issue on the GitHub tracker.

Jump in: Installation ➜ · Usage ➜ · Frameworks ➜