Decision Tree classification with Python and Spark.
We will use Decision Tree classification algorithm to build a model from historical data of patients, and their response to different medications.
Then we will use the trained decision tree to predict the class of a unknown patient, or to find a proper drug for a new patient.
We have data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Drug x and y.
We want to build a model to find out which drug might be appropriate for a future patient with the same illness.
Table of contents
The installation of Python and Pyspark and the introduction of the Decision Tree classification is given here.
Decision Tree classification with Python
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
my_data = pd.read_csv("drug200.csv", delimiter=",")
my_data[0:5]
Age | Sex | BP | Cholesterol | Na_to_K | Drug | |
---|---|---|---|---|---|---|
0 | 23 | F | HIGH | HIGH | 25.355 | drugY |
1 | 47 | M | LOW | HIGH | 13.093 | drugC |
2 | 47 | M | LOW | HIGH | 10.114 | drugC |
3 | 28 | F | NORMAL | HIGH | 7.798 | drugX |
4 | 61 | F | LOW | HIGH | 18.043 | drugY |
Using drug200.csv data read by pandas, declare the following variables:
- X as the Feature Matrix (data of my_data)
- y as the response vector (target)
X = my_data[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K']].values
X[0:5]
array([[23, 'F', 'HIGH', 'HIGH', 25.355],
[47, 'M', 'LOW', 'HIGH', 13.093],
[47, 'M', 'LOW', 'HIGH', 10.113999999999999],
[28, 'F', 'NORMAL', 'HIGH', 7.797999999999999],
[61, 'F', 'LOW', 'HIGH', 18.043]], dtype=object)
from sklearn import preprocessing
le_sex = preprocessing.LabelEncoder()
le_sex.fit(['F','M'])
X[:,1] = le_sex.transform(X[:,1])
le_BP = preprocessing.LabelEncoder()
le_BP.fit([ 'LOW', 'NORMAL', 'HIGH'])
X[:,2] = le_BP.transform(X[:,2])
le_Chol = preprocessing.LabelEncoder()
le_Chol.fit([ 'NORMAL', 'HIGH'])
X[:,3] = le_Chol.transform(X[:,3])
X[0:5]
array([[23, 0, 0, 0, 25.355],
[47, 1, 1, 0, 13.093],
[47, 1, 1, 0, 10.113999999999999],
[28, 0, 2, 0, 7.797999999999999],
[61, 0, 1, 0, 18.043]], dtype=object)
y = my_data["Drug"]
y[0:5]
0 drugY1 drugC2 drugC3 drugX4 drugYName: Drug, dtype: object
We will be using train/test split on our decision tree Let's import train_test_split from sklearn.cross_validation
from sklearn.model_selection import train_test_split
X_trainset, X_testset, y_trainset, y_testset = train_test_split(X, y, test_size=0.3, random_state=3)
We will first create an instance of the DecisionTreeClassifier called drugTree. Inside of the classifier, specify criterion=”entropy” so we can see the information gain of each node.
drugTree = DecisionTreeClassifier(criterion="entropy", max_depth = 4)
drugTree # it shows the default parameters
DecisionTreeClassifier(criterion='entropy', max_depth=4)
drugTree.fit(X_trainset,y_trainset)
DecisionTreeClassifier(criterion='entropy', max_depth=4)
Prediction
Let's make some predictions on the testing dataset and store it into a variable called predTree.predTree = drugTree.predict(X_testset)
print (predTree [0:5])
print (y_testset [0:5])
['drugY' 'drugX' 'drugX' 'drugX' 'drugX']40 drugY51 drugX139 drugX197 drugX170 drugXName: Drug, dtype: object
Evaluation
Next, let's import metrics from sklearn and check the accuracy of our model.from sklearn import metrics
import matplotlib.pyplot as plt
print("DecisionTrees's Accuracy: ", metrics.accuracy_score(y_testset, predTree))
DecisionTrees's Accuracy: 0.9833333333333333
Accuracy classification score computes subset accuracy: the set of labels predicted for a sample must exactly match the corresponding set of labels in y_true.
In multilabel classification, the function returns the subset accuracy. If the entire set of predicted labels for a sample strictly match with the true set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.
Decision Tree classification with Pyspark
import findspark
findspark.init()
#Tree methods Example
from pyspark.sql import SparkSessionspark = SparkSession.builder.appName('treecode').getOrCreate()
Understanding the Data
data = spark.read.csv('drug200.csv',inferSchema=True,header=True)
data.printSchema()
root |-- Age: integer (nullable = true) |-- Sex: string (nullable = true) |-- BP: string (nullable = true) |-- Cholesterol: string (nullable = true) |-- Na_to_K: double (nullable = true) |-- Drug: string (nullable = true)
The feature sets of this dataset are Age, Sex, Blood Pressure, and Cholesterol of patients, and the target is the drug that each patient responded to.
It is a sample of binary classifier, we will use the training part of the dataset to build a decision tree, and then use it to predict the class of a unknown patient, or to prescribe it to a new patient.
data.head()
Row(Age=23, Sex='F', BP='HIGH', Cholesterol='HIGH', Na_to_K=25.355, Drug='drugY')
Spark Formatting of Data
# A few things we need to do before Spark can accept the data!
# It needs to be in the form of two columns
# ("label","features")
# Import VectorAssembler and Vectors
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
data.columns
['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug']
data.show()
+---+---+------+-----------+-------+-----+
|Age|Sex| BP|Cholesterol|Na_to_K| Drug|
+---+---+------+-----------+-------+-----+
| 23| F| HIGH| HIGH| 25.355|drugY|
| 47| M| LOW| HIGH| 13.093|drugC|
| 47| M| LOW| HIGH| 10.114|drugC|
| 28| F|NORMAL| HIGH| 7.798|drugX|
| 61| F| LOW| HIGH| 18.043|drugY|
| 22| F|NORMAL| HIGH| 8.607|drugX|
| 49| F|NORMAL| HIGH| 16.275|drugY|
| 41| M| LOW| HIGH| 11.037|drugC|
| 60| M|NORMAL| HIGH| 15.171|drugY|
| 43| M| LOW| NORMAL| 19.368|drugY|
| 47| F| LOW| HIGH| 11.767|drugC|
| 34| F| HIGH| NORMAL| 19.199|drugY|
| 43| M| LOW| HIGH| 15.376|drugY|
| 74| F| LOW| HIGH| 20.942|drugY|
| 50| F|NORMAL| HIGH| 12.703|drugX|
| 16| F| HIGH| NORMAL| 15.516|drugY|
| 69| M| LOW| NORMAL| 11.455|drugX|
| 43| M| HIGH| HIGH| 13.972|drugA|
| 23| M| LOW| HIGH| 7.298|drugC|
| 32| F| HIGH| NORMAL| 25.974|drugY|
+---+---+------+-----------+-------+-----+
only showing top 20 rows
from pyspark.ml import Pipeline
from pyspark.ml.feature import IndexToString, StringIndexer
data.show()
+---+---+------+-----------+-------+-----+
|Age|Sex| BP|Cholesterol|Na_to_K| Drug|
+---+---+------+-----------+-------+-----+
| 23| F| HIGH| HIGH| 25.355|drugY|
| 47| M| LOW| HIGH| 13.093|drugC|
| 47| M| LOW| HIGH| 10.114|drugC|
| 28| F|NORMAL| HIGH| 7.798|drugX|
| 61| F| LOW| HIGH| 18.043|drugY|
| 22| F|NORMAL| HIGH| 8.607|drugX|
| 49| F|NORMAL| HIGH| 16.275|drugY|
| 41| M| LOW| HIGH| 11.037|drugC|
| 60| M|NORMAL| HIGH| 15.171|drugY|
| 43| M| LOW| NORMAL| 19.368|drugY|
| 47| F| LOW| HIGH| 11.767|drugC|
| 34| F| HIGH| NORMAL| 19.199|drugY|
| 43| M| LOW| HIGH| 15.376|drugY|
| 74| F| LOW| HIGH| 20.942|drugY|
| 50| F|NORMAL| HIGH| 12.703|drugX|
| 16| F| HIGH| NORMAL| 15.516|drugY|
| 69| M| LOW| NORMAL| 11.455|drugX|
| 43| M| HIGH| HIGH| 13.972|drugA|
| 23| M| LOW| HIGH| 7.298|drugC|
| 32| F| HIGH| NORMAL| 25.974|drugY|
+---+---+------+-----------+-------+-----+
only showing top 20 rows
As you may figure out, some features in this dataset are categorical such as Sex or BP.
Decision Trees do not handle categorical variables. But still we can convert these features to numerical values.
data.columns
['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug']
We can apply StringIndexer to several columns in a PySpark Dataframe
indexers = [StringIndexer(inputCol=column, outputCol=column+"_index").fit(data) for column in list(set(data.columns)-set(['Drug','Na_to_K','Age'])) ]
pipeline = Pipeline(stages=indexers)
df_r = pipeline.fit(data).transform(data)
df_r.show()
+---+---+------+-----------+-------+-----+--------+-----------------+---------+
|Age|Sex| BP|Cholesterol|Na_to_K| Drug|BP_index|Cholesterol_index|Sex_index|
+---+---+------+-----------+-------+-----+--------+-----------------+---------+
| 23| F| HIGH| HIGH| 25.355|drugY| 0.0| 0.0| 1.0|
| 47| M| LOW| HIGH| 13.093|drugC| 1.0| 0.0| 0.0|
| 47| M| LOW| HIGH| 10.114|drugC| 1.0| 0.0| 0.0|
| 28| F|NORMAL| HIGH| 7.798|drugX| 2.0| 0.0| 1.0|
| 61| F| LOW| HIGH| 18.043|drugY| 1.0| 0.0| 1.0|
| 22| F|NORMAL| HIGH| 8.607|drugX| 2.0| 0.0| 1.0|
| 49| F|NORMAL| HIGH| 16.275|drugY| 2.0| 0.0| 1.0|
| 41| M| LOW| HIGH| 11.037|drugC| 1.0| 0.0| 0.0|
| 60| M|NORMAL| HIGH| 15.171|drugY| 2.0| 0.0| 0.0|
| 43| M| LOW| NORMAL| 19.368|drugY| 1.0| 1.0| 0.0|
| 47| F| LOW| HIGH| 11.767|drugC| 1.0| 0.0| 1.0|
| 34| F| HIGH| NORMAL| 19.199|drugY| 0.0| 1.0| 1.0|
| 43| M| LOW| HIGH| 15.376|drugY| 1.0| 0.0| 0.0|
| 74| F| LOW| HIGH| 20.942|drugY| 1.0| 0.0| 1.0|
| 50| F|NORMAL| HIGH| 12.703|drugX| 2.0| 0.0| 1.0|
| 16| F| HIGH| NORMAL| 15.516|drugY| 0.0| 1.0| 1.0|
| 69| M| LOW| NORMAL| 11.455|drugX| 1.0| 1.0| 0.0|
| 43| M| HIGH| HIGH| 13.972|drugA| 0.0| 0.0| 0.0|
| 23| M| LOW| HIGH| 7.298|drugC| 1.0| 0.0| 0.0|
| 32| F| HIGH| NORMAL| 25.974|drugY| 0.0| 1.0| 1.0|
+---+---+------+-----------+-------+-----+--------+-----------------+---------+
only showing top 20 rows
assembler = VectorAssembler(
inputCols=['Age',
'Sex_index',
'BP_index',
'Cholesterol_index',
'Na_to_K'],
outputCol="features")
output = assembler.transform(df_r)
Now we can fill the target variable Drug,
Deal with type of Drug
from pyspark.ml.feature import StringIndexer
indexer = StringIndexer(inputCol="Drug", outputCol="DrugIndex")
output_fixed = indexer.fit(output).transform(output)
final_data = output_fixed.select("features",'DrugIndex')
train_data,test_data = final_data.randomSplit([0.7,0.3])
train_data.show()
+--------------------+---------+
| features|DrugIndex|
+--------------------+---------+
|(5,[0,4],[29.0,12...| 2.0|
|(5,[0,4],[31.0,30...| 0.0|
|(5,[0,4],[34.0,18...| 0.0|
|(5,[0,4],[39.0,9....| 2.0|
|(5,[0,4],[40.0,27...| 0.0|
|(5,[0,4],[47.0,10...| 2.0|
|(5,[0,4],[50.0,7....| 2.0|
|(5,[0,4],[58.0,18...| 0.0|
|(5,[0,4],[60.0,13...| 3.0|
|(5,[0,4],[66.0,16...| 0.0|
|(5,[0,4],[68.0,11...| 3.0|
|(5,[0,4],[70.0,9....| 3.0|
|(5,[0,4],[70.0,13...| 3.0|
|(5,[0,4],[74.0,9....| 3.0|
|[15.0,0.0,0.0,1.0...| 0.0|
|[15.0,0.0,2.0,0.0...| 1.0|
|[15.0,1.0,0.0,1.0...| 0.0|
|[16.0,0.0,0.0,1.0...| 0.0|
|[16.0,1.0,0.0,1.0...| 0.0|
|[18.0,1.0,0.0,1.0...| 0.0|
+--------------------+---------+
only showing top 20 rows
The Classifiers
from pyspark.ml.classification import DecisionTreeClassifier,GBTClassifier,RandomForestClassifierfrom pyspark.ml import Pipeline
Create two models:
-
A single decision tree
-
A random forest
We will be using a college dataset to try to classify colleges as Private or Public based off these features
# Use mostly defaults to make this comparison "fair"
dtc = DecisionTreeClassifier(labelCol='DrugIndex',featuresCol='features')
rfc = RandomForestClassifier(labelCol='DrugIndex',featuresCol='features')
Train models:
# Train the models (its three models, so it might take some time)
dtc_model = dtc.fit(train_data)
rfc_model = rfc.fit(train_data)
Model Comparison
Let’s compare each of these models!
dtc_predictions = dtc_model.transform(test_data)rfc_predictions = rfc_model.transform(test_data)#gbt_predictions =
Evaluation Metrics:
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
# Select (prediction, true label) and compute test error
acc_evaluator = MulticlassClassificationEvaluator(labelCol="DrugIndex", predictionCol="prediction", metricName="accuracy")
dtc_acc = acc_evaluator.evaluate(dtc_predictions)
rfc_acc = acc_evaluator.evaluate(rfc_predictions)
print("Here are the results!")
print('-'*80)
print('A single decision tree had an accuracy of: {0:2.2f}%'.format(dtc_acc*100))
print('-'*80)
print('A random forest ensemble had an accuracy of: {0:2.2f}%'.format(rfc_acc*100))
Here are the results!--------------------------------------------------------------------------------A single decision tree had an accuracy of: 92.86%--------------------------------------------------------------------------------A random forest ensemble had an accuracy of: 89.29%
You can download the notebook here
Congratulations! We have practiced Decision Tree classification with Python and Spark.
Leave a comment